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Quantum theory of optical bistability. I: Nonlinear 
polarisability model 

P D Drummond and D F Walls 
Department of Physics, University of Waikato, Hamilton, New Zealand 

Received 3 April 1979, in final form 4 June 1979 

Abstract. A quantum treatment of a coherently driven dispersive cavity is given based on a 
cubic nonlinearity in the polarisability of the internal medium. This system displays 
bistability and hysteresis in the semiclassical solutions. Quantum fluctuations are included 
via a Fokker-Planck equation in a generalised P representation. The transmitted light 
shows a transition from a single-peaked spectrum to a double-peaked spectrum above the 
threshold of the lower branch. Fluctuations in the field are reduced on the upper branch and 
both photon bunching and photon antibunching are predicted, for different operating 
points. An exact solution obtained for the steady-state generalised P function shows 
decidedly non-equilibrium behaviour, e.g. the lack of a Maxwell construction. 

1. Introduction 

The possibility of achieving a bistable optical device using a saturable absorber inside a 
Fabry-Perot cavity was first suggested by Seidel (1969) and Szoke et a1 (1969). The 
motivation for constructing such a device is for potential use as a switching element in an 
optical communications system. The first experimental demonstration of a bistable 
device was achieved by Gibbs et a1 (1976), who used a nonlinear dispersive medium 
inside a Fabry-Perot cavity. Both the experiments of Gibbs et a1 (1976) and, more 
recently, those of Sandle and Gallagher (1978, private communication) have shown 
that threshold powers are lower in practical dispersive devices, relative to absorptive 
bistability . 

A considerable amount of theoretical work on optical bistability has been ger- 
formed. The first semiclassical analysis of both dispersive and absorptive bistability was 
given by McCall (1974). A semiclassical analysis using Maxwell-Bloch equations for 
absorptive bistability was given by Bonifacio and Lugiato (1976). A semiclassical 
analysis of a nonlinear dispersive Fabry-Perot interferometer using a nonlinear polaris 
ability model was given by Marburger and Felber (1978). A full semiclassical analysis 
of optical bistability in a Fabry-Perot cavity including inhomogeneous broadening has 
been given by Hassan et a1 (1978) and Bonifacio and Lugiato (1978~) .  Related 
analyses, but without inhomogeneous broadening, have been given by Meystre (1978), 
Agrawal and Carmichael (1979) and Schwendimann (1979). Quantum treatments 
have in the main been restricted to the absorptive case (Bonifacio and Lugiato 1978a, b, 
Bonifacio et a1 1978, Carmichael and Walls 1977, Hassan and Walls 1978, Walls et a1 
1979, Willis 1977, 1978, Narducci et a1 1978, Agarwal et a1 1978a, b, Lugiato 
1979). An exception is a recent paper by Willis and Day (1979), who have derived a 
master equation for dispersive bistability. 
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It is the aim of the present paper to give a full quantum-mechanical treatment of 
dispersive optical bistability. We shall adopt an approach of considering a cubic 
nonlinearity in the polarisation, as did Marburger and Felber (1978) .  We consider a 
single cavity field mode which is quantised and driven externally by a coherent driving 
field. Dissipation of the cavity mode is included. The full quantum-mechanical 
Hamiltonian for this system is constructed. As a first approximation we neglect 
quantum fluctuations and derive the semiclassical equations of motion. Then quantum 
fluctuations are included via the use of a generalised P function. This leads to the 
stochastic differential equations obeyed by the complex field amplitude. Adopting an 
expansion to first order in the variance of the fluctuations enables expressions for the 
mean photon number, the second-order correlation function and the spectrum of the 
transmitted light to be calculated. 

In the steady state in the regime of pure quantum fluctuations it is possible to solve 
exactly for the quasi-probability distribution function in the generalised P represen- 
tation. This enables exact expressions to be obtained for the mean photon number and 
the second-order correlation function. 

Although in this paper we derive the equations of motion from a phenomenological 
or macroscopic model for the nonlinear polarisability, we show in a following paper that 
identical equations are reproduced by a microscopic model for the medium consisting of 
two level atoms, for large detuning relative to the line width. 

2. Hamiltonian and mean field equations 

We wish to consider a single-mode field inside a cavity which contains a nonlinear 
dispersive medium. The single cavity mode is driven externally by a coherent driving 
field. 

The Hamiltonian for the interaction of a single-mode field and a nonlinear dis- 
persive medium may be obtained by expanding the polarisation of the medium to third 
order in the electric field amplitude: 

P = ~ ' " . E + x ' ~ ' : E E + x ( ~ )  i EEE (2.1) 
where x'") is a ( n  + 1)th rank susceptibility tensor. This yields for the Hamiltonian 
(Bloembergen 1965) 

H = : I d3r{/B/2/2po)+ E [ ~ ( E ~ + x ( ~ ) ) E + ~ ~ ~ ~ ) E E ' + ~ x ( ~ ) E E E ] } :  (2.2) 

where : 
due to lack of phase matching we may neglect the term in x ' ~ ) .  

: denotes normal ordering. If second harmonic generation can be neglected 

We make a normal-mode expansion for a single-mode electric field 

where the mode function U is defined to satisfy 

[ u * ( r ) ( l  + ~ ( ~ ) ( r ) / c ~ ) u ( r ) ]  d3r = 1. (2.4) 

The single-mode assumption is appropriate provided the modes have a large frequency 
spacing relative to the detuning of the input field and the nonlinear frequency shifts. 
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Upon making the rotating-wave approximation and noting the Hamiltonian is 
defined to be normal ordered we obtain 

H = hwcata +hxf fa t2a2 (2.5) 

where the anharmonicity parameter is defined as 

This quartic-mode integral for the anharmonicity parameter includes any effects due to 
spatial variation in the field intensity in the nonlinear medium. It can be verified that the 
use of a standing-wave mode increases the anharmonicity by a factor of 1.5 relative to 
the travelling-wave-mode case. 

We point out here that the Hamiltortian we have derived is the anharmonic 
oscillator Hamiltonian in the rotating-wave approximation. Thus, although the effects 
we derive are novel for optical systems, bistable behaviour in the classical anharmonic 
oscillator is well known. 

If we include the Hamiltonian for the coherent driving field and for a loss mechanism 
due to cavity damping we find for the total Hamiltonian 

4 

i= l  
H = C H i  

H~ = Awca +a 

H2 = Axnat2a2 

H3 = ih(a'E(t) e-i"L'-aE*(t) 

H~ = a ' rF + a r t 

Here w c  is the fundamental cavity resonance, x" is the anharmonicity, E(t )  is the driving 
field amplitude and wL the drivingfrequency while rF, r& are the reservoir operators for 
the cavity damping. This Hamiltonian is exact within the single-mode and rotating- 
wave approximations. 

In a reference system rotating at a frequency wL the master equation for the density 
operator of the cavity field mode is obtained by utilising standard techniques described 
in Louise11 (1973): 

4 

i = l  
P = C ~ j [ p I  

Here K '  is the energy relaxation rate, n th  is the thermal occupation number due to 
gaussian fluctuations in the thermal reservoir rF and the detuning Aw = w c  - wL. 

We shall consider the effect of quantum fluctuations in the next section. For the 
moment we neglect quantum fluctuations and consider equations for the mean field 
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amplitudes a = (a) .  In the semiclassical approximation (i.e. assuming that correlation 
functions factorise) 

E ( t )  - af ( (YCY *) 
(2.9) 

where f (aa*)  = K + 2xaa*  and we have defined the parameters K = K ' + ~ A w  giving the 
linear absorption and dispersion and ,y = ix" giving the nonlinear dispersion. 

In the presence of a two-photon absorber, equation (2.9) have the same form with 
x = x'+ ix" where x' gives the nonlinear absorption (Chaturvedi et a1 1977). 

If we define the mean photon number n = &a* the equations for the steady state 
following from equations (2.9) are 

Pi2 = nlf(n)12 

= n [ K " + (Am + 2 n ~ " ) ~ ] .  (2.10) 

We now investigate the regions of stability of this equation by a linearised analysis about 
the steady state. 

Introducing small fluctuations about the steady state 

f f ( t ) = a o + f f l ( t )  

we obtain the following linearised equations for the fluctuations: 

where 

(2.11) 

(2.12) 

(2.13) 

Using the Hurwitz criterion for stability one finds that to obtain stable eigenvalues it is 
necessary to have 

Tr (A)=2Re  (2.14) 

A change in stability properties can occur if either Tr(A) or Det(A) changes sign. The 
points where Det(A) vanishes are soft-mode instabilities (since one of the eigenvalues is 
zero). In fact, Det(A) = 0 is equivalent to finding a turning point in the state equation 
because 

Det(A) = a/EI2/dn. (2.16) 

If Det(A) is non-vanishing but Tr(A) is zero there is a hard-mode instability with the 
onset of oscillations. 

In the present situation of the nonlinear dispersive medium we find 

(2.17) 
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with 

Tr(A) = 2 ~ ‘  

Det(A) = 121xI ’n2+4n[x~*  + ~ * K ] + I K ~ ’ .  
For a linear loss mechanism K ’  > 0 so that Tr(A) > 0. (It is possible to get K ’  < 0 in a 
linear amplifier, i.e. a laser with an external field resulting in an instability.) 

The threshold points for dispersive optical bistability are Det(A) = 0. This yields the 
state equation 

(2 .18 )  (El’ = n[K’2 + (2,y”n + Ao) ’ ]  

with turning points 

n* = [ - 2 A o  * ( A o ’ - 3 ~ ‘ * ) ~ ’ ’ ] / 6 ~ ’ ‘ .  (2 .19 )  

It can be verified that for n < n -  or n > n +  the Hurwitz criterion gives stable 
eigenvalues, while for intermediate values of n there is an unstable branch. Hence 
provided n * are positive and real, the deterministic equations predict bistability with 
respect to small phase and amplitude fluctuations. It is clear that bistability requires 
that the detuning exceed a critical value, A o 2  > 3 ~ ’ ~ ,  and that the sign of the detuning is 
opposite to that of the anharmonicity, Awx” < 0. Hence for a positive x”, to obtain 
bistability the zero-field cavity resonance wc must be at a lower frequency than the 
driving frequency oL. In physical terms, the intensity-dependent refractive index of the 
intracavity medium will increase the effective cavity resonance frequency to cause 
dispersive bistability as the input intensity is increased through the bistable region. 

The state equation for bistability is displayed in figures 1 and 2 for different values of 
the detuning A o ,  showing that the existence of bistability depends on the detuning. 

E 

Figure 1. Chain curve, semiclassical value of steady-state field amplitude la 1 as a function of 
driving field E ;  full curve, quantum-mechanical mean of steady-state field amplitude / (a) \  as 
a function of driving field E ;  broken curve, second-order correlation function g“’(0) as a 
function of driving field E. Detuning Awx”<O (parameters Aw = -10, K ‘ =  1, x”= 0.5). 
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E 

Figure2. Asfor figure 1, butwithdetuningAwx”>O(parametersAw = 10, K ’ =  1,x’’= 04) .  

3. Quantum fluctuations via the Fokker-Planek equation 

The Fokker-Planck equation corresponding to the master equation can now be 
obtained via standard methods using the Glauber representation (Glauber 1963a, b, 
Louise11 1973). However, the resulting Fokker-Planck equation does not always have 
solutions except as generalised functions: that is, the diagonal P representation does not 
always exist?. For this reason we prefer to use the non-diagonal generalised P 
representation defined by 

as this always gives solutions on an appropriate domain (Drummond 1979, Drummond 
and Gardiner 1979). Here 9 is the integration domain and dp, is the integration 
measure. In Q Q  3 and 4 the integration measure is the volume integral d2a d2P over a 
complex phase space; in 8 5 the measure is a line-integral measure d a  dp over a 
manifold embedded in a complex phase space. For later use, we write (a ,  8) = (a ,  a’) 
where ((U, a’) are not complex conjugate. However, there is the following cor- 
respondence principle between operators and c numbers: 

i ?  a - a  CY -a  * 

The Fokker-Planck equation is as follows: 

? The (anti-normally ordered) Q representation (alpla), despite its existence and positive definiteness being 
guaranteed, is also not useful since the resulting Fokker-Planck equation has a non-positive definite diffusion 
matrix and exact solutions as in 0 5 are not obtained. 
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where we have defined = 2 ~ ' n ' ~ .  Here (Y = (a ,  a t )  is a vector (in two-dimensional 
complex space), the argument of the generalised P function. 

We now turn to the derivation of stochastic differential equations from the Fokker- 
Planck equation. When the normal (diagonal) P function representation is used with 
a * = a  it is readily shown that the presence of nonlinear terms means that the 
Fokker-Planck diffusion is non-positive definite. This means that the usual Ito 
theorems for stochastic differential equations are not applicable (Arnold 1974). 
However, as shown by Drummond and Gardiner (1979), the Fokker-Planck equation 
in (a ,  a t )  can be transformed to a four-dimensional equation with positive definite 
diffusion. 

The exact stochastic differential equations in the Ito calculus are obtained on 
transforming the Fokker-Planck equation into the Ito form: 

a a  

t 

(3.3) 
li2 t l ( t )  

2 E ( t )  - K(Y - 2Xa a ' 
r; 1.1 [t*(t)l .  et [,+I = [ E * ( f ) - K * a t  -2x*at2a r1, -2x a 

Here &, t2 are delta-correlated random gaussian functions so that CY, a' are complex 
conjugate in the mean. 

We may allow for fluctuations in the driving field by considering a simple model of 
coherent driving field plus thermal fluctuations: 

E ( [ )  =E,+6E(t) (3.4) 

( s E * ( ~ ) s E ( ~ ) )  = rEtqt--qS 
where 

This can be treated very simply within the framework of equations (3.3) by including 
this additional fluctuation term with the fluctuations already present to give a total 
non-diagonal term of 

r = r1 + rE. (3.5) 

Thus the overall stochastic differential equation would be 

r 4 " 2 [  t d t ) ]  (3.6) 

We will utilise these equations to obtain the deterministic state equations and the 
linearised response to fluctuations. It should be noted that the generalised P represen- 
tation as defined in equation (3.1) is a normally ordered representation and hence 
normally ordered averages are obtained via 

2 t  2 

-2x*a . ' 
t 2  I+[-"; ' 

" l a t ]= [  Eo-Ka-2xa 
at CY. E ~ - K * C Y ' - ~ X * C Y  CY 

4. Linearised fluctuation theory 

We now proceed to analyse the behaviour of the stochastic differential equations (3.6) 
close to a stable branch. We adopt an asymptotic expansion valid for small fluctuations 
(this may be formally shown to be an expansion in (T, where (T is the fluctuation variance 
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(Gardiner and Chaturvedi 1977)). To first order in the fluctuations, al(t)  obeys the 
equation 

a - al(t)  = -A. al(t) +D1'2(~o)  . t ( t ) .  
at 

(4.1) 

Here A is the linearised drift and D is the diffusion array evaluated at a = ao. These 
have the general form 

The correlation matrix 

(4.3) 

- - 

can be evaluated using the method of Chaturvedi er a1 (1977b): 

D.Det(A)+(A-I .Tr(A))D(A-I .Tr(A))T 
2 Tr(A) Det(A) 

c = (  

j (4.4) 
-2,yaE(~ +4,yn)*(r+Kt), rlK+4,ynj2+4Xff2n2Kf 

r j K  +4xn12+4~fr2n2Kt ,  -2X* (Yo *' ( K  +44Xn)(r+K') 

where 

A = K ~ ~ + A W ~ + ~ A W . X ~ ~ ~ + ~ ~ X " ~ ~ ~ .  

4.1. Transmitted intensity 

The total intensity in the cavity (or total photon number) is, to first order in the 
asymptotic expansion, 

f i  = /ao12.+(a:al) 

Thus there is a coherent and an incoherent part to the total intensity. We first look at 
the linear cavity limit where xft+O. In this limit the incoherent intensity is due to 
thermal fluctuations. Provided the driving field is coherent we obtain 

(4.6) 
that is, the intensities of the coherent field and the thermal background are additive in a 
linear cavity. This is to be expected as they are uncorrelated. In the nonlinear situation 
we obtain 

th f i = n + n  , 

lK  +4xnI2 
f i  = n + n th ( 

A 
) + 2,yft2n2/A. (4.7) 

Thus the analysis would predict an increase in the background fluctuation due to the 
nonlinearity with a maximum at A = 0. This divergence occurs at the instability points 
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n*, which are the points where the linear theory breaks down. Finally, there is an 
additional term proportional to n 2xff2.  This gives the intensity of quantum fluctuations 
in the system and is due to the nonlinearity in the polarisability. 

4.2. Second-order correlation function 

The effect of both quantum fluctuations and thermal fluctuations is to increase the total 
photon number. However, information on the photon statistics given by the second- 
order correlation function shows that these are physically different types of process. The 
second-order correlation function is defined by (Glauber 1963a, b) 

We shall consider the one-time correlation function g‘2’(0). While thermal fluctuations 
always increase g‘2’(0) above the input value of unity, for a coherent driving field the 
quantum noise term can decrease g‘2’(0) to a value less than one, indicative of photon 
antibunching statistics. Photon antibunching-a property predicted by quantum elec- 
trodynamics-has recently been observed (Kimble et a1 1977) in resonance fluores- 
cence from a two-level atom in agreement with theoretical predictions (Carmichael and 
Walls 1976a, b, Kimble and Mandel 1976, Cohen Tannoudji 1977). 

We shall calculate the correlation function g‘2’(0) to first order in the asymptotic 
expansion 

g‘2’(0) = 1 +- [ ( (u : (u~)+R~((u~((u : ) / (Y~)]  
2 
n 

= 1 + [(2nthlk +4xnI2 + 4 x f f 2 n 2 ) / ( A n )  -2x f ’ (hw  + 4 x f ’ n ) ( l  + 2n th ) /A] .  (4.9) 

Here the coefficient of nth is positive definite while the term arising from quantum 
fluctuations may be negative, thereby giving rise to photon antibunching for coherent 
driving fields. The effect in the limit of n + cc is not dependent on detuning, and is given 

(4.10) 

For lower n values, in the bistable region, this antibunching disappears and is re9laced 
by photon bunching. However, by looking at the correlation function in the case of 
detuning in the opposite direction to the bistable case (i.e. by allowing Awx”> 0), it can 
be shown that with a coherent driving field and zero-temperature reservoirs, there is 
photon antibunching for all input fields. In principle this offers the possibility of a direct 
measurement of photon antibunching without the additional atomic number fluctua- 
tions (Jakeman et al 1977, Carmichael eta1 1978, Kimble et a1 1978) which entered the 
experimental observation of Kimble et a1 (1977) in resonance fluorescence. In this 
respect the effect is similar to several other suggested nonlinear optical experiments for 
the observation of photon antibunching (Stoler 1974, Simaan and Loudon 1975, 
Chaturvedi et a1 1977, Mostowski and Rzazewski 1978, Drummond et a1 1979). 

by 
g‘2’(o) = 1-1 -1 3n . 

4.3. Spectrum of the transmitted light 

The spectrum may be obtained directly following the method of Chaturvedi et a1 
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(1977b), which gives 

S ( w L + w )  = n S ( w ) +  ( A + I .  iw)-‘D(AT-I. iu)-’ 

) [ 8 K ’ X f r 2 n 2 + r ( l K  +4xn f i w / * + 4 ~ ” ~ n ~ ) ]  (4.11) 
( 2 ~ 1 A  (U)/’ 

= n S ( w )  + 
where 

A ( w ) = ( i w  + ~ * + 4 x * n ) ( i w + ~ + 4 ~ n ) - 4 j ~ ( ~ n ~  . 
This spectrum contains a delta-function peak corresponding to the radiation 

transmitted at the input frequency plus two quasi-Lorentzian peaks located sym- 
metrically about the input frequency at frequencies 

w ~ = w L * ( 4 w 2 + 8 4 w ~ t f n + 1 2 n 2 ~ r t 2 ) 1 ’ 2  . (4.12) 

These lines coalesce to give a single-peaked spectrum when 

4 w 2  + 8Aw,y”n + 12n 2x”2 < 0. (4.13) 

In order to understand the effect of the nonlinearity on the spectrum we first compare 
this result with the case of a linear interferometer. 

The spectrum in this case is obtained by setting x’‘ = 0 in equation (4.11): 

(4.14) 

In this case we see that the pole at iw = --K vanishes, leaving a Lorentzian peak at 
w = wc-wL.. Thus the final form is (Louise11 1973) 

(4.15) 

Thus the overall spectrum is non-symmetric for wc # wL. There is an ‘elastic’ peak at 
the driving frequency wL and a Lorentzian peak at the interferometer tuning wc due to 
thermal fluctuations. If we compare this result with the nonlinear interferometer, it 
approaches the linear case at low enough driving fields. 

However as lEl is increased, the tuning point varies since the cavity refractive index 
is power-dependent when X I ‘  is non-zero. In addition, both symmetrically placed peaks 
can develop a finite peak height. The spectrum is plotted in figures 3 and 4 for various 
values of the driving field 1El. In the absence of thermal fluctuations (r = O), the 
spectrum arises entirely from the quantum fluctuations and is completely symmetric 
relative to wL. In general the spectrum is double-peaked, although there is a certain 
range of photon numbers where the lines coalesce to give a single line. This occurs at 

(4.16) 

As the threshold point is approached from below, the initially separated spectral lines 
coalesce, then one line diverges at the threshold point. Above the threshold a 
double-peaked spectrum appears on the upper branch. On reducing the driving 
intensity, the lines coalesce then diverge at the lower threshold. 

When thermal fluctuations are included the line closest to the effective inter- 
ferometer tuning is enhanced at low driving intensity. This corresponds to the linear 
result. However, when the input intensity is increased the spectral lines coalesce and 
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W 

Figure 3. Spectrum of the transmitted light below threshold (point B on figure 1). Broken 
curve, quantum fluctuations only; full curve, quantum plus thermal fluctuations. 

3-1 

W 

Figure 4. Spectrum of the transmitted light above threshold (point A on Figure 1). Broken 
curve quantum fluctuations only; full curve, quantum plus thermal fluctuations. 

then a crossing-over effect occurs. Above the bistable threshold the line furthest away 
from the original linear tuning becomes relatively enhanced. This occurs because the 
effective refractive index of the medium is changed by the driving field. 

A physical understanding of the spectrum may be obtained by considering the 
underlying quantum process?. In the case of a perfectly coherent driving field we 
consider the incident scattering process involving two laser photons giving rise to the 
appearance of two sidebands. This leads to a two-peaked spectrum symmetrically 
placed about wL and with equal peak heights since photons at frequency U ;  and 
2 w L - w ;  are produced in the same scattering process (figure 5 ( a ) ) .  

The asymmetric spectrum in the case of thermal fluctuations may be understood by 
considering the process depicted in figure 5 ( 6 ) ,  which occurs in addition to the process 
above. The emission at the cavity frequency is enhanced either by stimulated emission 
of a thermal photon ( w L > w 6 )  or by absorption of a thermal photon (wL<w; ) ,  which 
enables energy to be conserved. Thus when thermal radiation is present emission at the 
cavity frequency is enhanced relative to the other emission peak at 2wL- U; .  It should 

t We wish to thank C Cohen Tannoudji for discussions on this point. 
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Figure 5. (a) Photon scattering process with coherent light. ( b )  Photon scattering process 
when thermal fluctuations are present. 

be noted that in figure 5 U ;  refers to the effective cavity frequency including changes to 
the nonlinear refractive index. 

A similar behaviour is observed in the case of detuned atomic fluorescence with a 
fluctuating driving field (Kimble and Mandel 1977, Wodkiewicz 1978, Knight et a1 
1978, Hassan and Bullough 1979). In this case there is a symmetric spectrum with a 
coherent input that becomes asymmetric when fluctuations are included in the input. 

5. Exact photon statistics 

In the previous sections the effect of quantum fluctuations was calculated to first order 
in the fluctuation variance. It is, however, of interest to calculate moments in regions 
where the linearisation procedure is not valid. This may be achieved in the steady state 
by means of an exact solution of the Fokker-Planck equation which exists whenever the 
‘potential‘ equations (Haken 1975) are satisfied?. 

Consider the Fokker-Planck equation 

a 
at - P ( a )  = (a,A,(a) +&,aD,,(a))P(a). (5.1) 

A steady-state solution exists provided the potential conditions 

a,v, = a,v, (5.2) 

V p b )  = ( D p Y ( 4 ) - * ( 2 A V ( a )  +aJL(a) ) .  (5 .3)  

are satisfied, where 

These conditions are not satisfied in general for the Fokker-Planck equation (3.2). One 
may consider the limits r >> l,yn 1 or Tcc l,yn I. These are the ‘thermal’ or ‘quantum’ noise 
limits, respectively. 

f Although potential solutions have previously only been used in cases of thermal noise, a similar mathema- 
tical procedure produces a solution to the present Fokker-Planck equation in the quantum noise limit. 
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For dispersive optical bistability no potential solution exists in the thermal limit. 
This is in constrast to absorptive optical bistability where a potential solution has been 
obtained in the thermal limit (Bonifacio and Lugiato 1978, Schenzle and Brandt 1978). 
In the quantum limit, that is for a perfectly coherent driving field and kT << haL,  we can 
neglect thermal fluctuations, that is set r = 0. The diffusion array is then 

3 KCY +2xa2at--Eo 
K * a t  + ~ X * Q + ' L Y  -E: 

A = [  

The calculation of V is straightforward: 

v2=-(,)j7+2x*a 1 t?* -E$/aT') 
X a  

( 5 . 5 )  

where we have defined t? = K -2x. This yields 

and the equality of cross derivations is thus obtained directly. 

and steady-state distribution: 
The next step is to integrate the generalised force V to obtain the potential function 

P(n)ss=exp(- IY V P ( 4  dai )  

= exp[(t/x) In a + (K /x ) *  In a t  + ( E ~ / x ~ )  + ( E R / x * ~ + )  + 2 a a 9  (5 .8 )  

We may simplify this by defining the driving phase so that ( E o / x )  is real, which gives 

where 

It can be seen immediately that the usual integration domain of the complex plane with 
ai  = a* is not possible since the potential diverges for aat + CO. This means that no 
Glauber-Sudarshan P function exists in the steady state (except as a generalised 
function). Instead it is necessary to choose a generalised P representation, which 
corresponds to an expansion of p with non-diagonal coherent state projection opera- 
tors. This implies an integration domain with a t  # a*,  defined so the distribution 
function vanishes correctly at the boundary. This means choosing new paths of 
integration for a, a' which are to be line integrals on the individual (a ,  a')  complex 
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planes. In other words, the new domain will be a complex manifold embedded in the 
space C2. Firstly a variable change is made to p = l / a ,  Pt = l /at .  The normalisation 
integral is then obtained (where is the integration path): 

The integrand is now in a recognisable form as corresponding to a sum of gamma 
function integrals. It is therefore appropriate to define each path of integration to be a 
Hankel path of integration, from (-CO) on the real axis around the origin in an 
anticlockwise direction and back to (-CO). With this definition of the integration 
domain, the following gamma-function identity holds (Abramowitz and Stegun 1964) 

Hence, applying this result to both p and Pi integrations, one obtains 

(5.11 

(5.12 

The series is a transcendental function which can be written in terms of the 
generalised Gauss hypergeometric series. That is, there is a hypergeometric series 
called which is defined as (Gradshteyn and Ryzhik 1965) 

(5.13) 

From now on, for simplicity, we will write just F (  ), instead of ). Now the 
normalisation integral can therefore be rewritten in the form 

(5.14) 

The moments of the distribution function divided by the normalisation factor give 
all the observable one-time correlation functions. Luckily the moments have exactly 
the same functional form as the normalisation factor (with the replacement of (c, d )  by 
( c  + i, d + j ) )  so that no new integrals need to bc calculated. The ith-order correlation 
function is 

G") = ( ( U ' ) ~ ( U ) ' ) ~  (5.15) 

(5.16) 

This is the general expression for the ith order correlation function of a nonlinear 
dispersive cavity with a coherent driving field and zero-temperature heat baths. 

The results for the mean amplitude ( a )  and correlation function g2(0) are 

) *  1 E d x / 2 W c ) ~ ( d ) F ( i  + c, i + d, ~ ( E o / x / ~ )  
r(i + c)r( i  + d ) F ( c ,  d,  2 / E 0 / x / ' )  = ( 

(5.18) 



Nonlinear polarisability model 739 

These quantities are plotted in figures 1 and 2, where they are compared with the 
semiclassical value for ( a ) .  It is seen that, whereas the semiclassical equation predicts a 
bistability or hysteresis, the exact steady-state equation which includes quantum 
fluctuations does not exhibit bistability or hysteresis. 

The extent to which bistability is observed in practice will depend on the fluctua- 
tions, which in turn determine the time for random switching from one branch to the 
other. The driving field must be ramped in time intervals shorter than this random 
switching time in order for bistability to be observed. 

The variance of the fluctuations as displayed by g‘*’(O) show an increase as the 
fluctuations are enhanced near the transition point. The dip in the steady-state mean at 
the transition point is due to out-of-phase fluctuations between the upper and lower 
branches. 

We note that the exact steady-state mean ( E /  does not cut the semiclassical curve in 
two equal areas, i.e. it does not give a Maxwell construction. This is an important 
difference of nonequilibrium phase transitions compared with equilibrium phase 
transitions. Mathematically, it is a consequence of the nonconstant coefficient of the 
diffusion term in the Fokker-Planck equation. This serves to indicate the essentially 
different nature of the fluctuations. In this case the fluctuations are quantum in origin, 
though similar effects occur in other non-equilibrium systems, e.g. chemical instabilities 
(Matheson et a1 1975, Janssen 1974). 

6 .  Summary 

A quantum treatment of a coherently driven nonlinear dispersive Fabry-Perot cavity 
has been given. The semiclassical equations predict bistability and hysteresis. The 
spectrum of the transmitted light which exhibits a single peak near the threshold of the 
lower branch splits into two peaks as the system makes the transition to the upper 
branch. For a coherent driving field these peaks are symmetrically placed about the 
frequency of the driving field. If fluctuations are present in the driving field the 
spectrum becomes asymmetric as the peak at the interferometer resonance is enhanced. 
The photon statistics of the transmitted light are studied through a calculation of g‘*’(O). 
It is shown that fluctuations in the driving field are reduced on the upper branch. For a 
coherent driving field the transmitted light on the upper branch will exhibit the property 
of photon antibunching. This effect is enhanced with detuning in the opposite direction 
to that for bistability. 

In the absence of thermal fluctuations an exact expression for the photon dis- 
tribution function in the steady state was obtained. The distribution obtained cor- 
responds to a density matrix with a non-diagonal representation in terms of coherent 
states (generalised P representation). The generalised P representation allows for an 
analytic expression to be obtained for the distribution function for fields which exhibit 
photon antibunching-a region where solutions for the Glauber-Sudarshan P 
representation are not possible except in terms of highly singular distributions. This 
steady-state distribution has a completely different character from the Landau-Gins- 
berg type of distribution associated with thermal fluctuations in equilibrium systems. In 
this case the fluctuations are quantum and the non-equilibrium nature of the transition 
is reflected by the absence of a Maxwell construction. The system studied, dispersive 
optical bistability, has great potential for use in optical communication systems. In 
addition, this system offers several possible interesting experiments involving photon 
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statistics and spectral measurements to investigate the nature of quantum fluctuations 
in non-equilibrium systems. 
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